Skip to content

UltraCold Atom News

Sections
Personal tools
Home » News » Molecular Bose-Einstein Condensate at Swinburne

Molecular Bose-Einstein Condensate at Swinburne

Back to News

Group: Hannaford

The Molecular BEC team in the ARC Centre of Excellence for Quantum-Atom Optics (ACQAO) at Swinburne University have realised a molecular Bose-Einstein condensate (MBEC) of bosonic 6Li2 molecules formed from fermionic 6Li atoms, as well as a degenerate Fermi gas of 6Li atoms. The molecular BEC was achieved in an crossed optical dipole trap on the low magnetic field side (770 G) of a magnetically tunable Feshbach resonance (centred at 834 G), where the atoms form molecules, and the degenerate Fermi gas of 6Li atoms was achieved on the high magnetic field side (1150 G) of the Feshbach resonance.

The figure shows a sequence of absorption images as more atoms/molecules are evaporated from the optical trap. The dramatic appearance of a central non-Gaussian density peak is the signature of bosonic 6Li2 molecules undergoing the transition to a Bose-Einstein condensate.

Posted: 31 Aug 2007     Date: 01 Apr 2007


Conferences
Quantum Thermodynamics: Thermalization and Fluctuations
27 Sep 2017
Yukawa Institute for Theoretical Physics, Kyoto University, Japan
ICQSIM 2017 International Conference on Quantum Simulation
13 Nov 2017
Ecole Normale Supérieure, Paris, France
 

© 2005-2017
Contact us | About the site | Link to the site